当前位置:学学看123学习频道教学资料课题研究《信息技术环境下的数学教学设计》结题报告» 正文

《信息技术环境下的数学教学设计》结题报告

[10-15 16:26:37]   来源:http://www.xxk123.com  课题研究   阅读:8972

导读:除上述成果外,通过实验更重要的成果与影响表现在以下几个方面:(一)典型案例分析普通高级中学实验教科书(信息技术整合本 数学)第二章《函数》是学生使用信息技术帮助数学学习较充分的一章,特别是图形计算器画函数图象的功能、列表的表达方式,极大地拓展了师生教与学的空间,学生的自主探究性学习较易实现. 案例一 渐近线 在一次测验中,为了考查学生对基本函数图象的掌握情况,设置了一个画函数图象简图的题目,其中一个函数是 (测验时不允许使用图形计算器),让我感到奇怪的是实验班(使用信息技术整合本 《 数学》并配有图形计算器的班级)的部分同学“画蛇添足”,在y轴负半轴的某个位置画了一个空心点,从这个点引出一条上升的曲线,而非实验班的同学却没有这样画的.为什么呢?我找来出现此种错误的学生询问,他们指着图形计算器上的图象说:“上面就是这样画的,考虑到对数的真数不能为0,而没有定义的点应当是空心点,就想当然地这样画了.”我回忆在两个班(一个实验班,一个非实验班)的教学中对函数图象的处理情况,实验班学生依赖图形计算器

《信息技术环境下的数学教学设计》结题报告,标签:小学语文课题研究,课题研究方案,http://www.xxk123.com
  除上述成果外,通过实验更重要的成果与影响表现在以下几个方面:
  (一)典型案例分析
  普通高级中学实验教科书(信息技术整合本  数学)第二章《函数》是学生使用信息技术帮助数学学习较充分的一章,特别是图形计算器画函数图象的功能、列表的表达方式,极大地拓展了师生教与学的空间,学生的自主探究性学习较易实现.
 
                                  案例一    渐近线
   在一次测验中,为了考查学生对基本函数图象的掌握情况,设置了一个画函数图象简图的题目,其中一个函数是 (测验时不允许使用图形计算器),让我感到奇怪的是实验班(使用信息技术整合本 《 数学》并配有图形计算器的班级)的部分同学“画蛇添足”,在y轴负半轴的某个位置画了一个空心点,从这个点引出一条上升的曲线,而非实验班的同学却没有这样画的.为什么呢?我找来出现此种错误的学生询问,他们指着图形计算器上的图象说:“上面就是这样画的,考虑到对数的真数不能为0,而没有定义的点应当是空心点,就想当然地这样画了.”我回忆在两个班(一个实验班,一个非实验班)的教学中对函数图象的处理情况,实验班学生依赖图形计算器画图,师生都极少亲自描点作图,非实验班的同学没有机器可以依赖,尽管不能接触丰富的函数图象,可是所学的几个基本函数图象却是师生共同经历了计算、列表、描点、画图的过程,记忆相对深刻,考查中如果考查纸笔画图,他们未必处于劣势.看来,图形计算器在函数学习中的应用不能简单地仅画画图象,还应当将这一功能与纸笔运算、逻辑推理、列表作图之间达成一种平衡,更要发挥信息技术的优势,追求对数学知识的深刻理解.
学生在测验中的错误反映了他们并未真正明白对数函数在x = 0附近的变化情况,对这种“无限接近”的理解有困惑,于是,我提前引入“渐近线”的概念,首先列出函数值表,改变步长(分别设步长为Δx = 0.1, 0.001, 0.000 1, ……),观察函数值在x = 0附近的变化,不论步长如何小,开头两行的函数值的差始终保持不变,体会第一行中“”的含义;然后又回到函数图象,在应该有图象而没有显示出来的地方,用计算器的局部放大功能(zoombox)放大,屏幕上出现一段图象,它与y轴*得很近,几乎与y轴平行.后来再次讨论函数时,我们也研究了它与函数的图象的关系,为了说明直线 是函数的渐近线,仍然同时列出两个函数的函数值表,设步长为x=10,发现随着的增大,两函数值非常接近,有一个同学突然发言“怎么当x=100时两函数值相等”,这与推理结论相矛盾的“意外”发现引起了学生们的兴趣,又有一同学提议输入函数看看,结果当x=100时函数值并不相等,经过讨论,终于认识到都是近似运算惹的祸,表格中的数据要求保留四位有效数字,两数的差如果小于0.01,屏幕上的显示结果一样,当时,与的前四位有效数字一致,但的第四位有效数字是小数点后第四位,因此,上述“意外”又在情理之中.用局部放大功能也显示,看起来重合的两条曲线事实上并没有重合,一次放大不清楚还可以二次放大,三次放大……,直到看清楚,就象显微镜一样,细微的关系也会明明白白呈现在你眼前.
  这一案例让我体会到,学数学的真谛在于思考,同学们面对数学问题时,先不要急于按计算器,想一想,图象应该在哪几个区域,走势会如何,操作计算器验证,灵活应用多种功能,充分利用多元联系的表示方法,既要看得清楚,更要想个明白,所谓先想再操作;弄清了“是什么”,思考“为什么”,“怎么做”,“说明了什么”等才是深化对数学本质理解的关键.因此,我要求学生按照“想、作、思”的步骤使用计算器,动脑筋、勤思考才能学好函数.
            案例二      函数图象大比拼
  年轻人总是充满了好奇,学生应用计数算器绝对不仅仅限于教学内容,我们先来看下面来自学生心得体会的摘录:

上一页  [1] [2] [3] [4] [5] [6]  下一页


Tag:课题研究小学语文课题研究,课题研究方案教学资料 - 课题研究

Copyright 学学看123 All Right Reserved.

1 2 3 4 5 6 7 8 9 10