同学A:“拿到计算器后,我不停地探索不同的功能,画许多函数的图象,通过不同符号的组合画不同的图象,记得曾画过心跳的图象,从1次到次,从指数到对数,一切想到的函数关系,都能找到一个图象,只有想不到,没有做不到,我们便开始比哪个的更怪异、更好看,寻求其中的对称美与不对称美.”
同学B:“学习函数时,有的同学课上课下都在玩计算器器,希望能够发现一块别人未曾找到的新大陆;同学们对于把这个计算器玩出名堂的人很崇拜.比如说刘效林,他在教大家如何表示绝对值时表情很神气,还有王海晨,他画出“耐克”函数之后,大家简直佩服得不了.”
同学C:“还有一次我忽然想,,的图象是什么,于是就拿起图形计算器开始按,发现是一些奇怪的图形;如果没有计算器,这样的好奇心与想象力该如何满足?我可能永远不会去思考,,之类古怪的函数,计算器启发了我们的好奇心.”
同学D:“大家都满怀好奇进入这奇妙的数学世界,一回生二回熟,随着‘耐克函数’、‘麦当劳函数’相继诞生,我们画出的不仅仅是函数的图象,也是一些优美线条的组合,于是手中的计算器就活了,一到下课,前后左右的同学都拿出‘武器’来进行图形大比拼,比谁的图象最好看、最复杂、最新奇、最有美学价值,机器似乎变成了玩具,我们从中受益匪浅,脑中的数学世界活了,寓教于乐,两全其美,爱数学从图形计算器开始.”
同学E:一天,同桌拿着图形计算器给我看上面一个标准的阿迪达思标志,我想这不可能,因为它不可能是一个函数的图象呀,可眼前的一切都是真的,过后他悄悄告诉我,这是用描点画图搞出来的,我高呼上当,后来我也用这种办法将自己的名字弄到屏幕上,去骗那些还不知道这项技术的同学.又有一次当我输入时,发现它的图象是个半圆,我就想能不能弄出一个圆呢,和同桌研究了一节课,恍然大悟,再画一个和它对称的半圆不就行了,解析式应该是,输进去的结果正如所料,当时那份高兴难以形容.”
在许多学生眼中,数学是枯燥无味的,因此,让学生喜欢数学既是让学生学好数学的手段,也是改变数学在人们心目中形象的需要.引入图形计算器在一定程度上激发了学生学习数学的热情,但仅仅去追求一些新奇的、表面的东西就偏离了数学的本质.我在想,学生面对各种各样的图象时,想过为什么它会是这样吗?“耐克函数”、“麦当劳函数”这样的名字是怎么想出来的?同学怎么将与半圆联系起来的?通过个别交流、访谈,背后的故事给了我一些启发.
在整合本教材中我们讨论过函数,由于它的图象在第一象限的部分与耐克商标相象,一些熟悉的篮球迷对此倍感亲切,于是,在课堂上有同学将它命名为“耐克函数”,命名者受到大家的推崇,另一同学就想,其它著名商标有没有可以用函数图象表示的,因为他回家经常要路过一家麦当劳店,他想起了麦当劳标志,下课后他提出了这一想法,立即引起很多同学的兴趣.他们构造函数时首先想到图象应该关于轴对称、偶函数,但想到绝对值、二次函数、分段表示的是班上的数学高手.可见,真正的探究源于兴趣,创设情景很重要(这一次是同学自己创设的),很多人去研究,但往往只有少数人才能在关键处取得突破,而后通过交流,逐渐传播开来.过了一段时间,我进行了一次调查,提出问题者和率先解决问题者,以及少数几个主要传播者对情景还记忆犹新,能迅速写出解析式,多数同学知道有这么回事,但想不起解析式,也不知道如何解决这一问题.
两个案例都是发生在教学中的真实故事,既让我们看到图形计算器对教师教、学生学的有力支持,也让我们感到要让学生进行高水平的思维活动并非易事.按机器前先想一想,面对的数学问题是什么,猜想一下结果会怎样,估计一下走势或图象,操作中多动脑筋,切忌一按了之,对图象、数据的反思尤为重要,它既是验证一个问题的结束,更是另外一系列问题的开始,“想、作、思”应成为学习数学的一种习惯.
(二)探索图象变换的规律
在缺乏技术支持的环境中高一学生学习函数这一内容时,往往把函数的三种表示方法:解析法、列表法、图象法不能有效联系在一起用于解决问题,特别由数思形的能力更显不足.如何帮助学生更好地建立这种多元联系表示呢?笔者曾做过这样一个尝试:
根据的图象(图1),探索及的图象变换规律.
上一页 [1] [2] [3] [4] [5] [6] 下一页
Tag:课题研究,小学语文课题研究,课题研究方案,教学资料 - 课题研究